Output impedance

Ideal output would maintain \(V_{OUT, \text{ideal}} \) no matter what.

Real life:

\[
\begin{align*}
\text{Vout, ideal} & \quad \Rightarrow \quad \text{Model any output... ... as:} \\
\text{Vout} & \quad \Rightarrow \quad \text{A} \quad \Rightarrow \quad \text{Iout}
\end{align*}
\]

\[Z_{OUT} = -\frac{\Delta V_{OUT}}{\Delta I_{OUT}} \]

(low \(Z_{OUT} \) is desirable)

Input impedance

Ideal input would draw no current no matter what: \(I_{IN} \)

Real life:

\[
\begin{align*}
\text{IN} & \quad \Rightarrow \quad \text{Model any input... ... as:} \\
\text{VIN} & \quad \Rightarrow \quad \text{B}
\end{align*}
\]

\[Z_{IN} = \frac{\Delta V_{IN}}{\Delta I_{IN}} \]

(high \(Z_{IN} \) is desirable)

Loading effects

When \(Z_{IN} \) & \(Z_{OUT} \) are finite, there is a voltage reduction called "loading" due to the voltage divider formed by \(Z_{IN} \) & \(Z_{OUT} \):

\[
\begin{align*}
\text{Ideal A} \quad Z_{OUT} & \quad \Rightarrow \quad \text{Ideal B} \\
\text{VOUT, ideal} & \quad \Rightarrow \quad \frac{Z_{IN}}{Z_{IN} + Z_{OUT}}
\end{align*}
\]

\[
\begin{align*}
\text{VOUT} & = V_{OUT}, \quad \frac{Z_{IN}}{Z_{IN} + Z_{OUT}}
\end{align*}
\]
Bipolar transistors

A transistor is a valve for electricity. A small signal applied to the "handle" controls the main flow of electricity.

NPN
- Collector
 - Electron flow
 - I_c (main flow)
- Emitter
 - I_e
- Base
 - I_b

PNP
- Collector
 - Hole flow
 - I_c (main flow)
- Emitter
 - I_e
- Base
 - I_b

Circuit symbol
- How it looks to a DMM
- Actual construction

Simple model (works most of the time)

1) Be junction is forward-biased in normal operation
 \[V_{be} \approx 0.6V \] (e.g., for NPN, \[V_e \approx V_b - 0.6V \])

2) $I_c = \beta I_b$, $\beta \approx 100$ (highly variable, temp. sensitive)

First important circuits w/ bipolar transistors:

The Emitter Follower

- V_{cc} (usually +15V)
- V_{in}
- V_{out}

By rule 1, $V_{out} = V_{in} - 0.6V$.

Common Emitter Amplifier

$\Delta V_b = \Delta V_{in}$ (in goes thru C)

$\Delta V_e = \Delta V_b$ (by 1)

$\Delta I_c = \Delta V_e / R_c = \Delta V_{in} / R_{c}$

$\Delta V_{out} = -\Delta I_c R_c$

V_{cc}
- V_{in}
- R_c
- R_1
- R_2

* R_1, R_2 are chosen to
 - V_{in}:
 - Set the quiescent operating V_b halfway between 0.6V & V_{cc}.
 - C is chosen to block the DC level of V_{in}, but allow through signals at frequencies of interest:
 \[f_{3dB} = \frac{1}{2 \pi R_{11} C} \]
 \[R_{11} = \frac{R_1 R_2}{R_1 + R_2} \]

\[V_b \]

\[V_{out} \]

\[V_{cc} \]