The Ultraviolet catastrophe
Cavity: a metal box:
The electric field component of the electromagnetic radiation is analogous to the string, & forms standing waves in the box:

Classical physics (i.e. equipartition theorem, without the restriction $k_B T \gg$ level spacing) predicts that each of these modes gets $k_B T$ ~ an oo amount of energy in the box!

In 1D: $W_n = nW_1 \Rightarrow$ modes are evenly spaced in frequency.
However, in 3D, there are a number of similar ways to fit half-wavelengths into the cavity, and one can show that the frequency spacing between modes is $\propto \frac{1}{n^2} \Rightarrow$ as you go to higher frequencies (the ultraviolet end of the spectrum), the infinitude of energy density gets even more extreme!

$p_T = \frac{\text{energy}}{\text{vol}}$ for a 1 Hz band of frequencies

$T = 1500^\circ K$

1900: Max Planck cures the catastrophe by assuming that each electromagnetic standing wave mode can only take on quantized values of energy: $0, h\nu, 2h\nu, ... n\hbar\nu$

By requiring agreement with the classical result for the limit $k_B T \gg h\nu$, he showed that the probability of a normal mode having a "quanta" of energy is $\propto e^{- n\hbar\nu / k_B T}$. Qualitatively, this means that the high ν modes, which are the most problematic for the ultraviolet catastrophe, are unlikely to be excited at all. He was also able to find the value of \hbar, now known as "Planck's constant": $\hbar = 6.626_{-34}^{+43} \text{ Js}$
The agreement between Planck's theory and experiment was remarkable:

![Graph](image)

\(T = 1595^\circ K \)

However, most scientists of the time considered this to be a "math trick", and didn't believe that the energy of electromagnetic radiation was really quantized.

The **Photoelectric effect** (another argument for photons)

- For \(V = 0 \), one finds that electrons are ejected from the cathode only by light with \(\lambda > \lambda_0 \); even very intense light of lower frequencies yields no electrons.

- For light \(\lambda > \lambda_0 \), one can measure the maximum KE of the ejected electrons by finding the "stopping potential", i.e. the negative voltage \(V_0 \) applied to the anode that reduces the current of electrons to zero.

Einstein (1905): It takes an energy \(W \) (the "work function") to eject an electron from the cathode. The energy of light is quantized into units \(* E = h\gamma * \)

Thus, the KE of the electron is \(KE = eV_0 = h\gamma - W \).

The measured value of \(h \) matched Planck's value!
1923: Compton Scattering (yet another argument for photons)

\[
\text{light} \xrightarrow{h\nu, \lambda} e^- \quad \rightarrow \quad e^+ \xrightarrow{h\nu', \lambda'}
\]

Before \quad \rightarrow \quad \text{after}

To analyze, we apply cons. of energy (using \(E=h\nu \)) & cons. of momentum:

\[E^2 = p^2c^2 + h^2c^4 \quad \Rightarrow \quad E_{ph} = p_{ph}c \]

(comparing this with \(E=h\nu \) gives)

\[p = \frac{h \lambda}{c} \]

The analysis shows exactly the experimentally-observed dependence of frequency shift on scattering angle.

Single Photon detection: Photomultiplier tubes

![Diagram of photomultiplier tube]

- 0V
- 200V
- 6000V
- Glass
- Low W metal
- Single photoelectron
- 4000V
- Vacuum
- Anode (metal)
- 8000V
- Impact of photoelectron accelerated to 2000 eV produces many electrons
- Detectable electron pulse