Physics is clearly the most important, and also the most fun of all the sciences. Many of the most remarkable achievements of humanity are in the realm of physics, from landing men on the moon to cramming nearly a trillion transistors onto a computer chip smaller than your pinky fingernail to understanding the fundamental structure of matter. Physics forms the foundation for astronomy, chemistry, and biology. The approach of physics, and it has been enormously successful in an astonishing variety of situations, is to build up an understanding of complex systems through a thorough understanding of simplified versions.

This course is primarily about the mechanical world – the world of motion and acceleration, of spinning frisbees and orbiting asteroids, of energy and momentum, of car crashes and exploding nuclei. It is also about the vibrations and waves that surround us, from sound to surf, from car suspensions to the oscillating cantilevers used for nanometer-scale imaging; we will treat these topics somewhat briefly, since they are the entire focus of physics 213a. If time permits, and I am hopeful that it will, we will also study thermal properties of materials, and elementary thermodynamics, including ideas of heat transfer, entropy, and maximal efficiency of engines. We will certainly study, though not in depth, methods relating to energy generation and conservation, including wind power, hydroelectric power, solar power, geothermal power, and others. At the end of the course, you will engage in a short independent project, which will allow you, if you wish, to explore one of these topics at greater length.

You should expect this course to be very challenging. However, if you are willing to put in the required effort, you will find it immensely satisfying. You will learn from your fellow students, and you will teach them. You will have multiple opportunities to show me how much you understand (see the “two-pass” grading system below). We will work hard together, and we will have fun together. Let the physics adventure begin!

Instructor:

Walter Smith
INSC L110
Office hours: M 10:00-11:00
Tu 10:30-11:30, 1:45-2:45
W 3:30-4:30
Th 10:30-11:30, 2:30-3:30
F 10:00-11:00
or by appointment

Electronic mail is always welcome. I will occasionally send you mail and announcements. As a participant in this course, you are required to check your e-mail daily for corrections about problem sets, etc.

A good way to get together is to arrange (after class) a mutually agreeable time. Please do not hesitate to contact me; no question or topic is too small.

Feedback: If you have concerns about the course or ideas about how to make it better, you should let me know immediately, either in person or by e-mail. Don't wait!

Location and times:

• Classes- MWF 11:30-12:30, H108, Labs Tu or W 1:15-4:00 (roughly every other week)

Text:

• Physics for Scientists & Engineers, 3rd Ed., by Wolfson & Pasachoff
Assignments and Tests:

- Written work will be assigned weekly, and is due at the start of class on the assigned date, ordinarily the Friday of the week. There will be a physics “clinic” staffed with helpful physics majors on the evening before the assignment is due. However, you are expected to make a serious attempt at each of the problems on your own before coming to the clinic. There will also be assigned reading to prepare you for class discussion. You will also undertake one final project; the number of problems on the weekly assignments will be reduced while you’re working on it.
- There will be two take-home examinations, (90 minutes each) plus a take-home final exam.

Grading procedures for specific elements of the course:

- Written exercises-- We will use a two-pass procedure for handling problem sets – please read carefully! Please use regular pencil or black ink for your problem sets!! Please leave space after each problem for later corrections. After you turn in a problem set, I will grade it using red ink. Half of the grade for the homework will be based on this first grading pass.

 Your paper will then be turned back to you at your next class meeting, along with “skeleton” solutions. (These are not complete written-out versions of the problems, but rather guidelines and waypoints to help you along.) At this point, consulting the skeleton solutions as needed, using blue ink or blue pencil, and writing on the same paper you originally turned in, you will complete any problems which you were unable to do at first, and write out complete corrections to problems which you did incorrectly. The goals of doing the grading this way are to ensure that you understand each problem fully, and also to give you a “second chance” on problems that you muff. You will then turn in your revised problem set on the following Friday in class. I will check over your revisions (using green ink for grading!), and assign the remaining 50% of the grade. In principle, everyone should have a perfect revised version, since you may consult the skeleton solutions as needed in preparing this.

 To make this whole scheme work, it is essential that you leave space on your problem set to write in corrections. You may wish to leave space at the bottom of each page, or to use the back of the preceding page.

 You will be graded on the presentation and comprehensibility of your assignments. This does not mean that we require you to have neat handwriting! However, we do expect you to make an effort to make your writing legible. Perhaps more importantly, we expect you to present your problems in a logical and easy-to-follow manner. The grader will mark with a circled “P” (for “presentation”) any problem which is not presented clearly. You will receive a one point deduction for each P beyond the first two. (A typical problem or significant subpart of a problem is worth 2 or 3 points.) For the first two assignments, no deductions will be taken for P’s. This will give you a chance to get used to my expectations. If the reason you got a P for any problem is not clear, please see me about it.
• Exams--understanding is the key. Partial credit will be given for sensible efforts even without a completely correct answer. We will also use a two-pass system for the exams; the first pass will receive 60% weighting, and the second pass 40%.
• Your final course grade will be computed using the following weighting

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>First exam</td>
<td>14%</td>
</tr>
<tr>
<td>Second exam</td>
<td>18%</td>
</tr>
<tr>
<td>Final exam</td>
<td>26%</td>
</tr>
<tr>
<td>Final Project</td>
<td>5%</td>
</tr>
<tr>
<td>Weekly Assignments</td>
<td>37%</td>
</tr>
</tbody>
</table>

Late policies:

• The following late penalties will be in effect for homework. You are permitted two 1-week extensions without any penalty during the semester when you are stressed out with work. Just turn in a sheet of paper indicating that you are giving yourself a "free extension." The two extensions must be used for separate problem sets; they cannot be combined to get a two-week extension on one problem set. Save them for when you really need them. Other than these extensions, work turned in late will not be graded, unless an extension is granted in advance for truly unusual circumstances (e.g. death in the family or serious illness). As in most physics classes, these weekly assignments are one of the central learning experiences of the course, and so your performance on these receives a heavy weight in the overall course grade. Please be diligent about starting on the homework early each week, and getting it in on time.

• Exams must be turned in not later than the stated times, except by prior agreement.

Honor code matters:

We value Haverford's honor code for the integrity it fosters and the pedagogical flexibility it affords. The important guiding principle of academic honesty is that you must never represent the work of others as your own. The following guidelines should govern your behavior in the course; please request clarification if you find yourself in any doubtful situations.

• You may seek assistance from the instructor or from your fellow students in doing the weekly assigned exercises and preparing for class discussions. You may also work together with other members of the class on these assignments and this is often quite beneficial. For your own good, avoid situations in which you are either contributing either too much or too little to such collaborations. Just copying someone else's work is clearly a representation of another student's work as your own and is a violation of the Code. Some “individual problems” will be assigned on each problem set; you may consult with the instructor as needed for these, but you may not consult anyone else.

• Solutions to the written exercises will be made available on the due date. (If you are using one of your free extensions, you should not consult the solutions until after you have turned in your assignment.)

• The take-home exams must be entirely your own work. Detailed instructions will be given on the exams themselves and discussed in advance. You will be allowed to use a page of equations prepared in advance, and a calculator, but no other materials. No collaboration of any sort is allowed once you start an exam. The allowed time (a single contiguous block) must be strictly observed.
• So as to spend my time efficiently, I will be reusing some materials, including exam questions, from previous years. Therefore, you are not allowed to look at materials from previous years; I will provide you with plenty of practice materials.
• Honor code guidelines for the lab are contained in the lab manual.

Advice
The following suggestions are based on the experience of previous students:
Review your class notes between lectures, and come prepared to ask questions. Annotate your class notes as you read them.
Stay up to date on the reading; preferably read the assigned material twice; for example, once before the relevant lecture, and once after.
Read with pen in hand to work out things described only briefly in the text or lecture. Ask yourself "what is the main point of each section", and answer the question.
When you take notes in class, don't just write down equations! Qualitative information is often essential!
You need to allocate about 7 hours for study and homework per week, plus the time you need for class, labs, and writing lab reports.
When you’re studying for an exam, review the solutions to problems and previous exams. Rather than simply re-reading all of the assigned chapters, first work some additional problems (the answers for the odd ones in the back of the book). This will give you guidance about the sections you really need to re-read.
Remember that if the material is a new or unfamiliar for you, learning will take time, just as learning a new language takes time. Try not to become discouraged if the going is rough at times, and don't prejudge your ability to master the material.