Pressure: \[P = \frac{F}{A} \]

\[1 \text{ N/m}^2 = 1 \text{ Pa} \]

\[1 \text{ atm} = 1.015 \text{ kg} = 15 \text{ psi} = 760 \text{ Torr} = 1 \text{ bar} \]

Equipartition theorem: Every term in the total energy that is proportional to a velocity\(^2\) or a position\(^2\) gets, on average, \(\frac{1}{2} k_B T \) of thermal energy. This applies if:
1. \(k_B T \gg \) quantum level spacing
2. system is in thermal equilibrium

\[\Rightarrow \text{ For a gas molecule inside a box, } \frac{1}{2} m v_x^2 = \frac{1}{2} k_B T \]

\[PV = n k_B T \]

Ideal Gas Law

Boltzmann's constant: \(k_B = 1.38 \times 10^{-23} \text{ J/K} \)

Avogadro's number: \(N_A \equiv \# \text{ of molecules needed to make a sample whose weight, } m \text{ grams, equals the molecular weight. } = 6.02 \times 10^{23} \)

\[\# \text{ of moles} = n = \frac{N}{N_A} \]

\[PV = nRT \text{ where } R = \frac{N_A k_B}{m} \]

Heat Capacity: \[C = \frac{q}{\Delta T} \]

Heat added to a system

Resulting temperature increase

Large C: It takes a lot of heat to raise \(T \) by 1\(^\circ\).

Absolute Temperature: \(T \)

The \(T \) in the equipartition theorem \& in the ideal gas law is on the Kelvin scale, for which \(T = 0 \leftrightarrow \text{ absolute zero} \).

\[T_{\text{Celsius}} = T_{\text{Kelvin}} + 273.15 \]

\[C \propto m \Rightarrow \frac{c}{m} \]

"specific heat"

is a property of the material.