Damped, driven oscillators

At low speeds (typ. for oscillators) \(F_{\text{drag}} = -b \frac{dx}{dt} \)

\(x_c = \frac{A}{m} \cos(w_d t) \)

Similarly, observations \(\Rightarrow S(w_d) \)

\(S = 0 \) at \(w_d \approx 0 \)

\(\Rightarrow x(t) = A(w_d) \cos[w_d t - S(w_d)] \)

You'll show on next homework that this is a sol'n to the DEQ, and you'll determine the forms of \(A(w_d) \) and \(S(w_d) \). For now, we'll just look at the results:

\[\begin{align*}
Q &= 4 \\
Q &= 2 \\
Q &= 1
\end{align*} \]

\[\begin{align*}
A &= \frac{w_d}{Q} \\
\gamma &= \frac{1}{m}
\end{align*} \]

\(Q \sim \) oscillations/damping \(\Rightarrow \) light damping

\(\leftrightarrow \) high \(Q \)

\(-m A w_d^2 \cos w_d t - b A w_d \sin w_d t + k A \cos w_d t \neq F_0 \cos w_d t \)

No! The \(\sin \) part is out of phase with the other parts.

\(\Rightarrow \) Improved guess: \(x(t) = A \cos(w_d t - S) \)

Observations \(\Rightarrow A \) is a function of \(w_d \): \(A(w_d) \)

\(A = A_d \) for \(w_d \approx 0 \), \(A \rightarrow \) big near \(w_d = w_0 \), \(A \rightarrow 0 \) for \(w_d \rightarrow \infty \)
Transient behavior
The above solution does not depend on initial conditions → it is only correct after the effect of initial conditions has worn off. One can show that the general solution is
\[x = A(w_0) \cos[\omega_0 t + \phi(w)] + B e^{-\frac{\alpha}{2} t} \cos(\omega t + \phi) \]

\(\text{steady state} \quad \text{transient} \)
(\(\text{decays away because of } e^{-\frac{\alpha}{2} t} \text{ term} \))

where \(\omega_0 \equiv \omega_0 \), and \(A, B \) are determined by initial conditions.

Waves
An oscillator can be used to create waves that travel, e.g. let the mass splash on a water surface.

Wave types: water, sound, on string, electromagnetic, gravity?!

\(\text{wave moves} \)

Wavenumber \(k = \frac{2\pi}{\lambda} \) \(\text{wavelength} \)