A continuous rv \(X \) has a **normal distribution** with mean \(m \) and variance \(\sigma^2 \) if \(X = m + \sigma Z \) where \(Z \) is standard.

Hence, the probability distribution for \(X \) is bell shaped with its peak directly above \(x = m \) and inflection points directly above \(x = m - \sigma \) and \(x = m + \sigma \).

Also \(P \left(a < X < b \right) = P \left(a < m + \sigma Z < b \right) \)

\[
= P \left(\frac{a - m}{\sigma} < Z < \frac{b - m}{\sigma} \right)
\]

Since \(E(Z) = 0 \) and \(V(Z) = 1 \), we see immediately that \(E(X) = m \) and \(V(X) = \sigma^2 \).