
Introduction to Computer Science CS105

Lab 6: Complexity (Fall 2014 edition)

This week’s lab focuses on analysis of existing algorithms, rather than programming. You may obtain the
sample data and programs mentioned below by checking out the resounce_complexity-Fall_2014
project in Eclipse, but you are not required to submit modified program files: You should hand in your
answers on paper or Team→Commit a PDF file of your results this week.

1. Consider the definition of the fib function, for finding numbers in the Fibonacci sequence, that
is given in the file fib.py and shown below. Note that this algorithm arises from “basic recursive
design” and is probably the one you used in Lab 2. Give a formula that indicates (in terms of the
function’s parameter n) the total number of times this function adds elements of the Fibonacci
sequence, as it works to find fib(n). (So, the number of operations for fib(3) would be 1, and
the number for fib(4) would be 2.)

You may either give an exact formula, or find two functions that enclose the actual number and
have the same “shape” (e.g. both linear, both quadratic, both exponential, etc.). If you don’t
know how to get started, try drawing call trees for fib(4), fib(5), and fib(6), and write down the
number of additions performed in each. Then see if you can come up with a way to find the
number of additions needed for fib(7) without writing down the whole tree, and generalize this
process. You can then either try to find a precise formula for the sequence of numbers, or find a
class of “larger trees” and “smaller trees” that are easier to analyze (and these will then give an
upper bound and a lower bound for the amount of work).

2. See if the number of additions given by your formula in Part 1 really corresponds to the amount
of time needed for this function, by using the table of running times shown below the function.
The table of running times (below and in fibonacci_time*.txt in the repository) shows the
amount of processing time needed to compute fib(n) for several values of n, both before and
after an upgrade of computer hardware.

If you have an exact formula for the number of additions in Part 1, see if the number of additions
corresponds to the processing time on each computer. To do this, check to see if the ratio of
the number of additions to the processing time should be roughly the same for all n (on a given
computer). You may want to use a spreadsheet (such as the libreoffice spreadsheet) to do these
calculations, and record the addition rate (the typical number of additions per seconds) that
best fits the computations for each generation of computer. Note that, if the addition rate is
consistent, you can use it to predict the running time of values not given in the table.

If your answer to Part 1 has an upper and lower bound with the same general shape, you don’t
need to find a single addition rate, but you should find a single function that has the same
shape as your upper and lower bounds, and fits the timing data. Note that a linear function will
have the same difference between each pair of successive values, and this difference will tell you
the slope of the linear function that fits the data. An exponential function will have the same
ratio between successive values, and this ratio tells you the base for the exponential function.

3. Produce a graph (or two) showing the measured timing numbers for each computer (plotted as
points) and your predicted time for that computer (plotted as a line). Use a logarithmic scale for
the (vertical) time axis of your graph. You may use graphing software if you know some already,
or your lab instructor may provide information about tools such as libreoffice or gnuplot, or you
may use pencil and paper.

4. Based on your answer to Part 2, give an estimate of how long it would take each generation

of computer to find the 60th and 100th numbers in the Fibonacci sequence with this algorithm.
Give the estimate both in seconds and in some more convenient unit (e.g., the n=5 and n� 55

times on pre-2010 computers could be listed as “4 microseconds” and “1.6 days”, respectively).

1

5. Optional (extra credit): Use the func_time function of the file fib_time.py to collect timing
data for strange_fib(n) for values of n from 5 to 55 (in steps of 5). If you’re not sure how to
time strange_fib, look at the fib_time function, which shows an example of using func_time.
You can even copy it and then just change your copy to time strange_fib instead. The file
fib_time_lots.py includes the loop that was used to gather timing data for our table; you
are welcome to copy or modify it too. Once you have data, make a chart and graph for the
strange_fib function, and give an estimate for the times to compute elements 60 and 100.
In other words, gather data and then repeat the previous exercises with strange_fib. Then,
briefly discuss the relative importance of the computer upgrade vs. the algorithm upgrade.

6. Optional: Write a function that uses tail recursion to find elements of the Fibonacci sequence,
and do a similar evaluation for it. If you know how to use loops or other relevant programming
techniques in Python, feel free to compare them as well.

Note that the way to compute elements of the Fibonacci sequence with the smallest number of
additions is to use the “closed form” equation for the Fibonacci sequence, which is discussed at
http://ulcar.uml.edu/~iag/CS/Fibonacci.html:

Fib(n)=
1

5
√

((

1+ 5
√

2

)

n

−

(

1− 5
√

2

)

n
)

Unfortunately, describing the computing resources needed for this computation is surprisingly tricky.

For reference, the code for the “basic recursive design” version of fib(n) is:

fib(n) is the n’th element of the Fibonacci sequence

def fib(n):

if n<=2:

return 1

else:

return fib(n-1) + fib(n-2)

The run-times needed for the Python function using the basic recursive algorithm, for the pre-2010 and
post-2011 lab computers, are shown in seconds below:

n seconds needed to find fib(n)
(pre-2010) (post-2011)

5 0.000004 0.0000016
10 0.00005 0.000018
15 0.0006 0.00020
20 0.006 0.0022
25 0.07 0.024
30 0.8 0.27
35 9. 3.0
40 100. 33.
45 1100. 360.
50 12000. 4000.
55 140000. 45000.
60 ??? ???
100 ??? ???

2

