Definitions: A *string* is a finite structure over the domain $\{1, ..., n\}$ with constants $n \ge 1$, totally ordered by a binary relation <, together with a fixed number of monadic predicates. The initial signature will be augmented by an infinite family of additional monotone (increasing) functions, i.e. those satisfying $x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$.

Some are defined by using minimum and maximum operators applied to the parameterized set $\varphi(y) = \{x : \varphi(x, y)\}$ defined by a first-order formula φ , where whenever we take the minimum or maximum of the empty set, we return the maximum or minimum element of the domain respectively, i.e. min $\{\} = n$ and max $\{\} = 1$. These both have first-order definitions.

$\min\left\{x:\varphi(x,y)\right\}=z$	\Leftrightarrow	$\forall x \left[\varphi(x, y) \to x \geq z \right] \land \exists x \varphi(x, y) \to \varphi(z, y) \land \nexists x \varphi(x, y) \to z = n$
$\max \{x : \varphi(x, y)\} = z$	\Leftrightarrow	$\forall x [\phi(x, y) \to x \leq z] \land \exists x \phi(x, y) \to \phi(z, y) \land \nexists x \phi(x, y) \to z = 1$

E.g. from these, it is easy to define the successor and predecessor functions *s* and *p* respectively, by:

$s(y) = \min \{x : x > y\}$	That is, $s(y) = y + 1$ for $y < n$ (<i>n</i> otherwise).
$p(y) = \max \{x : x < y\}$	That is, $p(y) = y - 1$ for $y > 1$ (1 otherwise).

Notice that both are monotone, because successor tops out at *n* and predecessor bottoms out at 1. Other monotone increasing functions will be derived by taking any function *F* and applying:

$$F_{max}(y) = \max \{x : F(x) \le y\}$$

$$F_{min}(y) = \min \{x : F(x) \ge y\}$$

E.g. $s_{min}(y) = p(y)$ and $p_{max}(y) = s(y)$, $s_{max}(y) = p(y)$ for y < n (*n* o.t.) and $p_{min}(y) = s(y)$ for y > 1 (1 o.t.).

Another application is the Skolem function returning the nearest element satisfying a formula $\varphi(x)$. Let γ_{φ} and λ_{φ} be the monotone (and idempotent) upward and downward Skolem functions that return respectively the greatest element $\leq y$ (1 otherwise) or least element $\geq y$ (*n* otherwise) satisfying φ . I.e.

 $\gamma_{\varphi} = F_{max}$ (except for *n*) where F(x) = x if $\varphi(x)$ (*n* otherwise) $\lambda_{\varphi} = F_{min}$ (except for 1) where F(x) = x if $\varphi(x)$ (1 otherwise)

We will see that the incorrect values for $\gamma_{\varphi}(n)$ or $\lambda_{\varphi}(1)$ are never used in our construction.

Theorem: Every first-order formula over strings is equivalent to a Boolean combination of quantifier-free formulas in a vocabulary expanded by linear-time computable function symbols.

Proof: Proceed by a quantifier elimination induction on the structure of formulas, where the only nontrivial case is application of an existential quantifier $\exists x \ \theta(x, \bar{y})$ to a formula in which negations have been pushed all the way down, replacing instances of \prec , \Rightarrow , and \neq by the corresponding disjunctions over \prec , \Rightarrow , and =. The key observation is that every term involving x (or any other variable) must be of the form F(x) where F is monotone, because all the functions are monadic and monotonicity is preserved under composition. In this case, F_{max} and F_{min} serve as quasi-inverses, allowing us to solve for x in any equality or inequality involving F(x) by moving F to the other side,

denoted by any term *t* (not containing *x*):

$F(x) \leq t$	\Leftrightarrow	$x \leq F_{max}(t) \wedge F(1) \leq t$
$F(x) \ge t$	\Leftrightarrow	$x \ge F_{min}(t) \land F(n) \ge t$

Use the transformations: $F(x) < t \Leftrightarrow F(x) \ge t$; $F(x) > t \Leftrightarrow F(x) \le t$; and $F(x) = t \Leftrightarrow t \le F(x) \le t$.

Next, put θ in disjunctive normal form and distribute the existential over disjunctions, factoring out any atomic formulas that don't involve *x* from within the scope of the quantifier to obtain $\exists y \ \psi(x, \bar{y})$ where ψ is a conjunction of atomic formulas, each containing *x*. Collect all atomic formulas which depend *only* on *x* (including any equations which involve *x* on both sides), and call their conjunction $\varphi(x)$. If there is an equality remaining it must be of the form $x = \tau(y)$ for *y* in \bar{y} , and consequently $\exists x \ \psi$ is equivalent to $\psi[x \leftarrow \tau(y)]$ in which all occurrences of *x* have been replaced by the term $\tau(y)$. Otherwise, all remaining formulas are inequalities of the form $x > \alpha_i(y)$ for $1 \le i \le k$ and $x < \beta_i(y)$ for $1 \le j \le l$ where each of the terms α_i and β_j involve some variable *y* among \bar{y} (not necessarily the same one). Rewrite these as $\alpha_1, ..., \alpha_k < x < \beta_1, ..., \beta_i$ in order to see that they are equivalent to the disjunction over all *i* and *j* of the conjunction over all *i'* and *j'* of $\alpha_i' \le \alpha_i < x < \beta_j \le \beta_j$. So *x* is sandwiched between two terms $\alpha_i = \alpha < x < \beta = \beta_j$ (let $\alpha = 1$ if k = 0 and $\beta = n$ if l = 0). To express $\exists x \ \psi$ we simply assert $\alpha < \gamma_{\varphi}(p(\beta))$ or equivalently $\lambda_{\varphi}(s(\alpha)) < \beta$ (this is where we need successor and predecessor, and note that $\gamma_{\varphi}(n)$ or $\lambda_{\varphi}(1)$ are never used).

To see each newly defined monotone function is computable in linear-time, it suffices to show by induction that F_{max} and F_{min} can be computed in linear-time, since clearly the values for predecessor and successor can be tabulated outright in linear-time. By induction hypothesis assume that a monotone F has been tabulated in linear-time. Starting from the beginning for F_{max} and the end for F_{min} respectively, it is a simple matter to assign all the values for them in a loop:

- *F*_{max}: For y = 1, let $F_{max}(1) = \max \{x : F(x) = 1\}$, starting the search from x = 1 and ending when F(x) > 1. For y = 2 upto n compute $F_{max}(y) = \max \{x : F(x) \le y\}$ starting from $x = F_{max}(y 1)$ and ending when F(x) > y.
- *F*_{min}: For y = n, let $F_{min}(n) = \min \{x : F(x) = n\}$, starting the search from x = n and ending when F(x) < n. For y = n 1 downto 1 compute $F_{min}(y) = \min \{x : F(x) \ge y\}$ starting from $x = F_{min}(y + 1)$ and ending when F(x) < y.

The total number of *x* values searched over all *y* values is linear because of monotonicity. [Therefore a minor modification might need to be made in computing the Skolem functions.]

Corollary: After a linear-time preprocessing stage; every first-order formula can be evaluated in constant-time given any particular assignment of its free variables.

Proof: Convert to a quantifier-free formula $\psi(\bar{y})$, and after computing tables for all the functions needed in linear-time, simply plug in values for the free variables and evaluate it in constant-time.

P.S. Extending this to modular counting quantifiers is even easier, since we only need to add monadic truth predicates.