
Quantifier elimination over finite strings with monotone functions

Definitions: A string is a finite structure over the domain {1, …, n} with constants n ≥ 1, totally

ordered by a binary relation <, together with a fixed number of monadic predicates. The initial

signature will be augmented by an infinite family of additional monotone (increasing) functions, i.e.

those satisfying x₁ < x₂ ⇒ f(x₁) ≤ f(x₂).

 Some are defined by using minimum and maximum operators applied to the parameterized set

φ(y) = {x : φ(x, y)} defined by a first-order formula φ, where whenever we take the minimum or

maximum of the empty set, we return the maximum or minimum element of the domain

respectively, i.e. min {} = n and max {} = 1. These both have first-order definitions.

 min {x : φ(x, y)} = z ⇔ ∀x [φ(x, y) → x ≥ z] ∧ ∃x φ(x, y) → φ(z, y) ∧ ∄x φ(x, y) → z = n

 max {x : φ(x, y)} = z ⇔ ∀x [φ(x, y) → x ≤ z] ∧ ∃x φ(x, y) → φ(z, y) ∧ ∄x φ(x, y) → z = 1

E.g. from these, it is easy to define the successor and predecessor functions s and p respectively, by:

 s(y) = min {x : x > y} That is, s(y) = y + 1 for y < n (n otherwise).

 p(y) = max {x : x < y} That is, p(y) = y − 1 for y > 1 (1 otherwise).

Notice that both are monotone, because successor tops out at n and predecessor bottoms out at 1.

 Other monotone increasing functions will be derived by taking any function F and applying:

Fmax(y) = max {x : F(x) y}

Fmin(y) = min {x : F(x) y}

E.g. smin(y) = p(y) and pmax(y) = s(y), smax(y) = p(y) for y < n (n o.t.) and pmin(y) = s(y) for y > 1 (1 o.t.).

 Another application is the Skolem function returning the nearest element satisfying a formula

φ(x). Let γφ and λφ be the monotone (and idempotent) upward and downward Skolem functions

that return respectively the greatest element ≤ y (1 otherwise) or least element ≥ y (n otherwise)

satisfying φ. I.e.

 γφ = Fmax (except for n) where F(x) = x if φ(x) (n otherwise)

 λφ = Fmin (except for 1) where F(x) = x if φ(x) (1 otherwise)

We will see that the incorrect values for γφ(n) or λφ(1) are never used in our construction.

Theorem: Every first-order formula over strings is equivalent to a Boolean combination of

quantifier-free formulas in a vocabulary expanded by linear-time computable function symbols.

Proof: Proceed by a quantifier elimination induction on the structure of formulas, where the only

nontrivial case is application of an existential quantifier x θ(x, ‾y) to a formula in which negations

have been pushed all the way down, replacing instances of ≮, ≯, and ≠ by the corresponding

disjunctions over <, >, and =. The key observation is that every term involving x (or any other

variable) must be of the form F(x) where F is monotone, because all the functions are monadic and

monotonicity is preserved under composition. In this case, Fmax and Fmin serve as quasi-inverses,

allowing us to solve for x in any equality or inequality involving F(x) by moving F to the other side,

S. Lindell 3/2012

denoted by any term t (not containing x):

F(x) t x Fmax(t) ∧ F(1) t

F(x) t x Fmin(t) ∧ F(n) t

Use the transformations: F(x) < t F(x) ≱ t; F(x) > t F(x) ≰ t; and F(x) = t t ≤ F(x) t.

 Next, put θ in disjunctive normal form and distribute the existential over disjunctions, factoring

out any atomic formulas that don’t involve x from within the scope of the quantifier to obtain y

ψ(x, ‾y) where ψ is a conjunction of atomic formulas, each containing x. Collect all atomic formulas

which depend only on x (including any equations which involve x on both sides), and call their

conjunction φ(x). If there is an equality remaining it must be of the form x = τ(y) for y in ‾y, and

consequently x ψ is equivalent to ψ[x ← τ(y)] in which all occurrences of x have been replaced by

the term τ(y). Otherwise, all remaining formulas are inequalities of the form x > αi(y) for 1 ≤ i ≤ k

and x < βj(y) for 1 ≤ j ≤ l where each of the terms αi and βj involve some variable y among ‾y (not

necessarily the same one). Rewrite these as α1, …, αk < x < β1, …, βl in order to see that they are

equivalent to the disjunction over all i and j of the conjunction over all i' and j' of αi' ≤ αi < x < βj ≤ βj'.

So x is sandwiched between two terms αi = α < x < β = βj (let α = 1 if k = 0 and β = n if l = 0). To

express x ψ we simply assert α < γφ(p(β)) or equivalently λφ(s(α)) < β (this is where we need

successor and predecessor, and note that γφ(n) or λφ(1) are never used).

 To see each newly defined monotone function is computable in linear-time, it suffices to show

by induction that Fmax and Fmin can be computed in linear-time, since clearly the values for

predecessor and successor can be tabulated outright in linear-time. By induction hypothesis

assume that a monotone F has been tabulated in linear-time. Starting from the beginning for Fmax

and the end for Fmin respectively, it is a simple matter to assign all the values for them in a loop:

Fmax: For y = 1, let Fmax(1) = max {x : F(x) = 1}, starting the search from x = 1 and

ending when F(x) > 1. For y = 2 upto n compute Fmax(y) = max {x : F(x) y}

starting from x = Fmax(y 1) and ending when F(x) > y.

Fmin: For y = n, let Fmin(n) = min {x : F(x) = n}, starting the search from x = n and ending

when F(x) < n. For y = n 1 downto 1 compute Fmin(y) = min {x : F(x) y}

starting from x = Fmin(y + 1) and ending when F(x) < y.

The total number of x values searched over all y values is linear because of monotonicity.

[Therefore a minor modification might need to be made in computing the Skolem functions.]

Corollary: After a linear-time preprocessing stage; every first-order formula can be evaluated in

constant-time given any particular assignment of its free variables.

Proof: Convert to a quantifier-free formula ψ(‾y), and after computing tables for all the functions

needed in linear-time, simply plug in values for the free variables and evaluate it in constant-time.

P.S. Extending this to modular counting quantifiers is even easier, since we only need to add

monadic truth predicates.

