
Quantifier elimination over finite strings with monotone functions 

Definitions: A string is a finite structure over the domain {1, …, n} with constants n ≥ 1, totally 

ordered by a binary relation <, together with a fixed number of monadic predicates. The initial 

signature will be augmented by an infinite family of additional monotone (increasing) functions, i.e. 

those satisfying x₁ < x₂ ⇒ f(x₁) ≤ f(x₂).  

 Some are defined by using minimum and maximum operators applied to the parameterized set 

φ(y) = {x : φ(x, y)} defined by a first-order formula φ, where whenever we take the minimum or 

maximum of the empty set, we return the maximum or minimum element of the domain 

respectively, i.e. min {} = n and max {} = 1. These both have first-order definitions.  

 

 min {x : φ(x, y)} = z  ⇔ ∀x [φ(x, y) → x ≥ z] ∧ ∃x φ(x, y) → φ(z, y) ∧ ∄x φ(x, y) → z = n  

 max {x : φ(x, y)} = z  ⇔ ∀x [φ(x, y) → x ≤ z] ∧ ∃x φ(x, y) → φ(z, y) ∧ ∄x φ(x, y) → z = 1 

 

E.g. from these, it is easy to define the successor and predecessor functions s and p respectively, by: 

 

 s(y) = min {x : x > y} That is, s(y) = y + 1 for y < n (n otherwise). 

 p(y) = max  {x : x < y} That is, p(y) = y − 1 for y > 1 (1 otherwise).  

 

Notice that both are monotone, because successor tops out at n and predecessor bottoms out at 1.  

 Other monotone increasing functions will be derived by taking any function F and applying: 

 

Fmax(y) = max {x : F(x)  y} 

Fmin(y) = min {x : F(x)  y} 

 

E.g. smin(y) = p(y) and pmax(y) = s(y), smax(y) = p(y) for y < n (n o.t.) and pmin(y) = s(y) for y > 1 (1 o.t.). 

 Another application is the Skolem function returning the nearest element satisfying a formula 

φ(x). Let γφ and λφ be the monotone (and idempotent) upward and downward Skolem functions 

that return respectively the greatest element ≤ y (1 otherwise) or least element ≥ y (n otherwise) 

satisfying φ. I.e.  

 

 γφ = Fmax  (except for n)  where F(x) = x if φ(x) (n otherwise) 

 λφ = Fmin  (except for 1)  where F(x) = x if φ(x) (1 otherwise) 

 

We will see that the incorrect values for γφ(n) or λφ(1) are never used in our construction.  

 

Theorem: Every first-order formula over strings is equivalent to a Boolean combination of 

quantifier-free formulas in a vocabulary expanded by linear-time computable function symbols.  

Proof: Proceed by a quantifier elimination induction on the structure of formulas, where the only 

nontrivial case is application of an existential quantifier x θ(x, ‾y) to a formula in which negations 

have been pushed all the way down, replacing instances of ≮, ≯, and ≠ by the corresponding 

disjunctions over <, >, and =. The key observation is that every term involving x (or any other 

variable) must be of the form F(x) where F is monotone, because all the functions are monadic and 

monotonicity is preserved under composition. In this case, Fmax and Fmin serve as quasi-inverses, 

allowing us to solve for x in any equality or inequality involving F(x) by moving F to the other side, 
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denoted by any term t (not containing x):  

 

F(x)  t   x  Fmax(t) ∧ F(1)  t  

F(x)  t   x  Fmin(t) ∧ F(n)  t  

 

Use the transformations: F(x) < t  F(x) ≱ t; F(x) > t  F(x) ≰ t; and F(x) = t  t ≤ F(x)  t.  

 Next, put θ in disjunctive normal form and distribute the existential over disjunctions, factoring 

out any atomic formulas that don’t involve x from within the scope of the quantifier to obtain y 

ψ(x, ‾y) where ψ is a conjunction of atomic formulas, each containing x. Collect all atomic formulas 

which depend only on x (including any equations which involve x on both sides), and call their 

conjunction φ(x).  If there is an equality remaining it must be of the form x = τ(y) for y in ‾y, and 

consequently x ψ is equivalent to ψ[x ← τ(y)] in which all occurrences of x have been replaced by 

the term τ(y). Otherwise, all remaining formulas are inequalities of the form x > αi(y) for 1 ≤ i ≤ k 

and x < βj(y) for 1 ≤ j ≤ l where each of the terms αi and βj involve some variable y among ‾y (not 

necessarily the same one).  Rewrite these as α1, …, αk < x < β1, …, βl in order to see that they are 

equivalent to the disjunction over all i and j of the conjunction over all i' and j' of αi' ≤ αi < x < βj ≤ βj'. 

So x is sandwiched between two terms αi = α < x < β = βj (let α = 1 if k = 0 and β = n if l = 0). To 

express x ψ we simply assert α < γφ(p(β)) or equivalently λφ(s(α)) < β (this is where we need 

successor and predecessor, and note that γφ(n) or λφ(1) are never used). 

 To see each newly defined monotone function is computable in linear-time, it suffices to show 

by induction that Fmax and Fmin can be computed in linear-time, since clearly the values for 

predecessor and successor can be tabulated outright in linear-time. By induction hypothesis 

assume that a monotone F has been tabulated in linear-time. Starting from the beginning for Fmax 

and the end for Fmin respectively, it is a simple matter to assign all the values for them in a loop: 

 

Fmax: For y = 1, let Fmax(1) = max {x : F(x) = 1}, starting the search from x = 1 and 

ending when F(x) > 1.  For y = 2 upto n compute Fmax(y) = max {x : F(x)  y} 

starting from x = Fmax(y  1) and ending when F(x) > y.  

 

Fmin: For y = n, let Fmin(n) = min {x : F(x) = n}, starting the search from x = n and ending 

when F(x) < n.  For y = n  1 downto 1 compute Fmin(y) = min {x : F(x)  y}  

starting from x = Fmin(y + 1)  and ending when F(x) < y.  

 

The total number of x values searched over all y values is linear because of monotonicity. 

[Therefore a minor modification might need to be made in computing the Skolem functions.]  

 

Corollary: After a linear-time preprocessing stage; every first-order formula can be evaluated in 

constant-time given any particular assignment of its free variables.   

Proof: Convert to a quantifier-free formula ψ(‾y), and after computing tables for all the functions 

needed in linear-time, simply plug in values for the free variables and evaluate it in constant-time. 

 

P.S. Extending this to modular counting quantifiers is even easier, since we only need to add 

monadic truth predicates.  


