Quantifier elimination over finite strings with monotone functions

Definitions: A string is a finite structure over the domain {1, .., n} with constants n = 1, totally
ordered by a binary relation <, together with a fixed number of monadic predicates. The initial
signature will be augmented by an infinite family of additional monotone (increasing) functions, i.e.
those satisfying x, < x, = f(x1) < f{x2).

Some are defined by using minimum and maximum operators applied to the parameterized set
o) = {x: @(x, y)} defined by a first-order formula ¢, where whenever we take the minimum or
maximum of the empty set, we return the maximum or minimum element of the domain
respectively, i.e. min {} = n and max {} = 1. These both have first-order definitions.

min {x: @(x,y)} =z & Vx[@exy) > x2z] AIx@x,y) 2 @z y) N ExQ(x,y) > z=n
max {x: @(x,y)} =2 & Vx[exy) > x<z]A3Xx@(xy) > @z y) NEx@(x,y) 2 z=1

E.g. from these, it is easy to define the successor and predecessor functions s and p respectively, by:

s(y) =min {x: x>y} Thatis, s(y) =y + 1 for y < n (n otherwise).
p(y) =max {x:x<y} Thatis, p(y) =y - 1 for y > 1 (1 otherwise).

Notice that both are monotone, because successor tops out at n and predecessor bottoms out at 1.
Other monotone increasing functions will be derived by taking any function F and applying:

Fmax()/) = max {X : F(X) Sy}
Fnin(y) = min {x: F(x) 2y}

E.g. smin(y) = p(y) and pmax(y) = s(), Smax(y) = p(y) for y < n (n o.t.) and pmin(y) = s(y) for y > 1 (1 o.t.).

Another application is the Skolem function returning the nearest element satisfying a formula
@(x). Let Y, and A, be the monotone (and idempotent) upward and downward Skolem functions
that return respectively the greatest element < y (1 otherwise) or least element = y (n otherwise)
satisfying ¢. lL.e.

Yo = Fnax (except for n) where F(x) = x if ¢(x) (n otherwise)
Ao =Fmin (exceptfor 1) where F(x) = xif ¢(x) (1 otherwise)

We will see that the incorrect values for y,(n) or A,(1) are never used in our construction.

Theorem: Every first-order formula over strings is equivalent to a Boolean combination of
quantifier-free formulas in a vocabulary expanded by linear-time computable function symbols.

Proof: Proceed by a quantifier elimination induction on the structure of formulas, where the only
nontrivial case is application of an existential quantifier 3x 8(x, y) to a formula in which negations
have been pushed all the way down, replacing instances of <, #, and # by the corresponding
disjunctions over <, >, and =. The key observation is that every term involving x (or any other
variable) must be of the form F(x) where F is monotone, because all the functions are monadic and
monotonicity is preserved under composition. In this case, Fnax and Fnin Serve as quasi-inverses,
allowing us to solve for x in any equality or inequality involving F(x) by moving F to the other side,

denoted by any term ¢t (not containing x):

Fx)<t = X<Fnax(t) NF(1) <t
Fix)>t & X2 Fnin(E) ANF(n) >t

Use the transformations: F(x) <t < F(x) 2t F(x)>t< F(x) £ tand F(x) =t t< F(x) <t

Next, put 0 in disjunctive normal form and distribute the existential over disjunctions, factoring
out any atomic formulas that don’t involve x from within the scope of the quantifier to obtain Jy
Y(x, y) where 1 is a conjunction of atomic formulas, each containing x. Collect all atomic formulas
which depend only on x (including any equations which involve x on both sides), and call their
conjunction ¢(x). If there is an equality remaining it must be of the form x = 7(y) for y in y, and
consequently 3x 1 is equivalent to Y [x < 7(y)] in which all occurrences of x have been replaced by
the term 7(y). Otherwise, all remaining formulas are inequalities of the form x > a;(y) for 1 <i <k
and x < Bj(y) for 1 <j <[where each of the terms «; and f; involve some variable y among y (not
necessarily the same one). Rewrite these as ay, ..., ak < x < B, ..., fi in order to see that they are
equivalent to the disjunction over all i and j of the conjunction over all i"and j' of @ < ai < x < 5 < B
So x is sandwiched between two terms ;= a<x<f=fj(leta=1if k=0and f=nifl=0). To
express Jx P we simply assert a < y,(p(B)) or equivalently A,(s(a)) < B (this is where we need
successor and predecessor, and note that y,(n) or A,(1) are never used).

To see each newly defined monotone function is computable in linear-time, it suffices to show
by induction that Fpnex and Fmin can be computed in linear-time, since clearly the values for
predecessor and successor can be tabulated outright in linear-time. By induction hypothesis
assume that a monotone F has been tabulated in linear-time. Starting from the beginning for Fpax
and the end for Fpi» respectively, it is a simple matter to assign all the values for them in a loop:

Fmax: Fory =1, let Fnax(1) = max {x : F(x) = 1}, starting the search from x = 1 and
ending when F(x) > 1. For y = 2 upto n compute Fnax(y) = max {x : F(x) <y}
starting from x = Frax(y — 1) and ending when F(x) > y.

Fmin: Fory=n,let Fnin(n) = min {x : F(x) = n}, starting the search from x = n and ending
when F(x) < n. Fory =n - 1 downto 1 compute Fnin(y) = min {x : F(x) > y}
starting from x = Fin(y + 1) and ending when F(x) < y.

The total number of x values searched over all y values is linear because of monotonicity.
[Therefore a minor modification might need to be made in computing the Skolem functions.]

Corollary: After a linear-time preprocessing stage; every first-order formula can be evaluated in
constant-time given any particular assignment of its free variables.

Proof: Convert to a quantifier-free formula ¥(y), and after computing tables for all the functions
needed in linear-time, simply plug in values for the free variables and evaluate it in constant-time.

P.S. Extending this to modular counting quantifiers is even easier, since we only need to add
monadic truth predicates.

S. Lindell 3/2012

