Virtue of compactness

Definition: A first-order sentence \(\psi \) is trivial over finite models if it is eventually constant.

Fact: Every nontrivial first-order sentence \(\theta \) has infinite models of both it and its negation.

Proof: There are arbitrarily large finite models of both \(\theta \) and \(\neg \theta \). Hence both \(\{ \theta \} \cup \Phi_{\omega} \) and \(\{ \neg \theta \} \cup \Phi_{\omega} \) are finitely satisfiable, so by compactness each have a finite model.

Compactness in the finite

Definition: A set of FO sentences is finitely consistent if every finite subset has a model.

Compactness: Every finitely consistent set of FO sentences has a model (i.e. is consistent).

\[(\exists x \forall y) \theta(x, y) \equiv \exists x_1 \ldots x_n \land \{ x \neq x_i : 1 \leq i < j \} \]

\[\Phi_{\omega} = \{ \exists x : n \geq 1 \} \]

Failure: Each finite subset of \(\Phi_{\omega} \) has a finite model, but \(\Phi_{\omega} \) does not have a finite model.

Gaifman graph

Definition: The Gaifman graph of a relational \(L \)-structure \(S \) is the simple graph over \(|S|\) with

\[E = \{(a, b) : a \neq b & S \models R(...a, ...b, ...) \text{ in } L\} \]

Idea: pair elements occurring jointly in tuple

Advantage: Can refer to graph notions such as distance \(d(a, b) \) and degree in any \(L \)-structure.

Connectivity [Gaifman, Vardi, ’85]

Theorem: Connectivity is not FO in the finite.

Proof: Take \(G \models \theta \leftrightarrow G \) is connected, \(|G| < \infty\), \(T = \{ \forall x, y \} E(x, y) \rightarrow x \neq y \land E(y, x) \} \) (simple)

\(\forall x \exists \gamma E(x, y) \land (\exists \theta) E(x, y) \) (two-regular)

\(\exists x_1 \ldots x_n \{ x \neq x_i \land E(x_i, x_2) \land ... E(x_2, x_3) \} \) (acyclic)

T is consistent with both \(\theta \) and \(\neg \theta \) (separately). So by compactness we get \(T \not\models \neg \theta \) and \(T \not\models \theta \).

Models of \(T \) are unions of infinite chains, so \(T \) is uncountably categorical. \(\therefore \) \(T \) is complete, \(\geq \).

Neighborhoods

Definition: The \(r \)-ball \(B_r(a) = \{ b : d(a, b) \leq r \} \).

The radius \(r \)-neighborhood of \(a \) is a structure:

\[N_r(a) = (B_r(a), R \cap |B_r(a)|^{arity(R)}, ... a) \text{ for all } R \text{ in } L\]

The component of \(a \) is \(N_r(a) = U \{ N_r(a) : r > 0 \} \).

Tuples: Define \(d(a, b) = \min \{ d(a, b) : a \text{ in } a \} \).

Extends \(N_r(a) \) and \(N_{\omega}(a) \) naturally for \(|a| > 0 \).
Isomorphism locality

Theorem: [Hella, Libkin, Nurmonen, 1999]
Every first-order L-formula $\theta(x)$ is Gaifman local, i.e. there is a radius r such that for all relational L-structures S and tuples a and b,

$$N_1(a) \cong N_2(b) \implies S \models \theta[a] \iff \theta[b]$$

Proof: follows from Gaifman’s theorem, 1982.

Internalize isomorphism

Proof: $\theta(x)$ not Gaifman local means for each r

$$G_r \models \theta[a] \land \lnot \theta[b]$$

where $f: N_1(a) \cong N_2(b)$

Take $T = \{\theta(a), \lnot \theta(b), f: N_1(a) \cong N_2(b) : r \geq 0\}$
T is finitely consistent. By compactness we get

$$(G_1, f) = \theta[a] \land \lnot \theta[b] \quad f: N_1(a) \cong N_2(b)$$

Threshold locality

Theorem: [Fagin, Stockmeyer, Vardi, 1995]
Over degree d bounded structures, every first-order sentence ϕ is Hanf threshold local: it has a radius r and threshold t such that for all N,

$$\{|a \in |A| : N_1(a) \cong N| \|^t \} \equiv |\{b \in |B| : N_2(b) \cong N|\}$$

Proof: inspired by Hanf’s lemma, 1965 (d, t).

Use a model pair

$(G_1, G_2, R), R \subseteq V_1 \times V_2$. Theory T says degree d &:

- $\{V_1, E_1\} \models \phi \land \{V_2, E_2\} \models \lnot \phi$ (substitution)
- $\{R(x, y) : N_1(x) \equiv N_2(y) : r > 0\}$ (since size $\sim d'$)
- $\{\forall x \forall y : R(x, y) \land \forall y \exists x : R(x, y) : t > 0\}$ (1 by 1)

If ϕ is not threshold local, then by compactness T has a model pair where $R(u, v) \rightarrow N_1(u) \cong N_2(v)$

The isomorphisms form a finitely branching tree under inclusion (König’s infinity lemma). $[u \sim v]$

Multiplicity of congruence classes

- Let $[e] = \{e' \in |G| : N_1(e) \cong N_2(e')\}$. T implies pointed components occur equi-numerously.
- Let $[N_1(e)] = \{N \subseteq |G| : N \cong N_1(e)\}$. Show the same for these un-pointed components.

If $m = |[e] \cap N_1(e)| < \infty$ then $|[N_1(e)]| = |[e]| \cdot m$
If $m = \infty, \{d(e, e') : e \sim e' \in N_1(e)\}$ is unbounded, so the type $\{d(c_i, c_j) : n : c_i \sim c_j, i, j \in \omega\}$ is consistent. By saturation (WLOG) $|[N_1(e)]| = \infty$.
Hence $G_1 \equiv G_2$, contradicting $G_1 \not\models \phi$. $G_2 \not\models \lnot \phi$.