REAL-TIME COLLABORATION TOOLS FOR DIGITAL INK

Steven Lindell
Haverford College
slindell@haverford.edu
INTRODUCTION

• Mathematics lab: problem-solving session
 – Group collaboration leads to active learning
 – Sketching requires formulas and diagrams

• Old-fashioned tools: paper and/or board
 – Advantages: high bandwidth and interactivity
 – Disadvantages: working remotely; saving info.

• Explored using tablet computers instead
 – Summer 2006 Cascade Mentoring program
BACKGROUND

• Collaboration requirements
 – Provide real-time (duplex) communication

• Persistence requirements
 – Provide long-term (organized) storage

• Purpose of interaction: convey mental models
 – Spatial: using a pen to draw ink and annotate
 – Temporal: using one’s voice for oral explanation
REAL-TIME COLLABORATION

• Communication can be defined as the transfer or conveyance of information through space:

 HERE duplex THERE

 ➔ simultaneous ➠

• handwritten sketching is low bandwidth:
 – AT&T: it could fit underneath the spoken audio

• The more critical issue is latency in order to preserve interactivity between participants.
LONG-TERM PERSISTENCE

- Storage can be defined as the transfer or retention of information through time:
 \[\text{NOW} \rightarrow \text{store} \rightarrow \text{THEN} \]
 \[\leftarrow \text{lookup} \leftarrow \]

- Raw data rate \(~100\) samples per second
- High compression ratio (strokes are very predictable) means very low storage needed
- Purpose is retention between sessions
PAPER

• Still popular since it combines both long-term persistence and real-time collaboration, i.e.
 – annotate a document, carry it from place to place, work jointly with someone else on same piece
 – retains a record of that information interaction

• However, without additional technology there is no remote collaboration or shared copies

• Editing is cumbersome, e.g. moving, erasing
SIMULTANEITY IN SPACE AND TIME

• **Deixis**: explaining an idea by simultaneously speaking about it and pointing to it
 – Establishes information correspondence between temporal (voice) and spatial (pen).

• Critical to STEM education and presentations
 – Math professors need lots of board space
 – Importance of pointers during technical presentations
PRIOR WORK

• HP Omnishare allowed two parties to speak and share ink over an ordinary telephone line:
 – full-duplex; real-time; dual floating cursors
• Failed due to high price and poor penetration
• Could save and organize screen images using a clever pile of papers metaphor
HARDWARE

• Use tablet monitor instead of graphics tablet
 – Sony’s PCV-LX920 desktop tablet computer
 • Integrated proprietary pen-tablet monitor
 • Windows XP (ordinary, not Tablet PC version)
 – Hewlett-Packard TC1000/1100
 • XP Tablet PC
 • hybrid
 • wireless
 • portable
SOFTWARE for instructor

• Interaction is usually simplex: one-way
• Must allow for persistent inking (annotations)
 – Ink should be stored in actual file, not as overlay

• Presentations: Microsoft Office PowerPoint
 – without Tablet PC, can only ink actual slide show
• Handouts: Microsoft Office Document Imaging
 – any document can be annotated with a pen, etc.
SOFTWARE for students

• Interaction should be duplex: two-way
• Must allow for collaboration (in real-time)
 – simultaneous inking of same file

• OneNote (optional part of Microsoft Office)
• DyKnow (server-based classroom solution)
• NetMeeting (little known part of Windows XP)
OneNote

- strong organizational features and an intuitive interface

- used disappearing ink instead of cursors
DyKnow

- Well-implemented student privileges good for teacher run collaborative sessions
- Limited organizing capability
- Cursors had high latency
NetMeeting

- Shared whiteboard
- Includes voice communication
- Hand pointers (buggy)
- No longer supported
FINDINGS

• Students’ preferred modes of interaction:
 – sitting side-by-side at one monitor (with two pens)
 – face-to-face monitors attached to same computer
• Why? Removed biggest problem – dual deixis
 – In simplex applications (giving a presentation, annotating a document by oneself) the cursor suffices for spatiotemporal reference (deixis).
 – But for pointing in duplex collaboration, there is a desperate need for dual cursor support!
<table>
<thead>
<tr>
<th>Pros of PC</th>
<th>Pros of Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Neater and cleaner</td>
<td>✓ More viewing space as opposed to a computer screen</td>
</tr>
<tr>
<td>✓ Faster text and image editing</td>
<td>✓ Does not experience lag or system errors</td>
</tr>
<tr>
<td>✓ Easier to organize and manage</td>
<td>✓ No software bugs</td>
</tr>
<tr>
<td>✓ Multiple users can write on a single page simultaneously</td>
<td>✓ Easily transportable</td>
</tr>
<tr>
<td>✓ Allows collaboration between physically disparate locations</td>
<td>✓ Increased lifespan of information</td>
</tr>
<tr>
<td>✓ Easily searchable</td>
<td>✓ Little necessary hardware</td>
</tr>
</tbody>
</table>
CONCLUSIONS

• Electronic collaboration on technically sophisticated STEM problems requires specialized tablet hardware, and software for simultaneous inking into same file.

• While several applications support this, their biggest shortcomings were in dual pointing:
 – Disappearing ink (OneNote)
 – High latency (DyKnow)
 – NetMeeting (buggy pointers)
ACKNOWLEDGEMENTS

• Support from HHMI at Haverford College
• Michael Jablin ‘07 (Physics, Haverford College)
• Alan Bronstein, teacher at Central High School
• His students Angel Feng and Katherine Sioson
• Dave Berque, for using DyKnow over summer
Participants in Cascade Mentoring Program
Summer 2006, Haverford College

Alan Bronstein Michael Jablin
Katherine Sioson Steven Lindell
Angel Feng